Duke Architecture

Accelerating Markov Random Field Inference Using Molecular Optical Gibbs Sampling Units

Siyang Wang, Xiangyu Zhang, Yuxuan Li, Ramin Bashizade, Song Yang, Chris Dwyer, Alvin Lebeck

Duke University

Probabilistic Computing

Image Segmentation [Sziranyi et al., 2000]

Computer Vision

Motion Estimation [Chen et al., 2010]

Predicting hepatitis B virus [Ye et al., 2003]

Medical Diagnosis

- Machine Learning is in the air!
- Probabilistic algorithms (e.g. Markov Chain Monte Carlo):

 potential for generalized frameworks.
 the only viable approach for certain problems.
 Key: generating samples.

Problem: Sampling Overhead

- Probabilistic algorithms need many iterations.
- Each iteration requires \approx **billion** samples.
- Sampling overhead is TOO HIGH.
- Alternative 1: Deterministic algorithm approximation:
 - Complex mathematical derivation, limited accuracy.
- Alternative 2: Can we use hardware specialization?

Hardware Specialization Comparison

Property	LFSR	Intel DRNG [Hofemeier, 2012]	Probabilistic CMOS [Chakrapani et al., 2006]	Digital Stochastic Circuits [Mansinghka et al., 2014]
Quality (true random number generation)	X	\checkmark	\checkmark	\checkmark
Complexity (simple post-processing)	X	X	X	X
Flexibility (parameterizability)	X	X	\checkmark	\checkmark
Flexibility (arbitrary distribution)	X	X	X	X
Functionality (application value in, application value out)	X	X	X	 Image: A second s

Duke Architecture

Hardware Specialization Comparison

Property	LFSR	Intel DRNG [Hofemeier, 2012]	Probabilistic CMOS [Chakrapani et al., 2006]	Digital Stochastic Circuits [Mansinghka et al., 2014]	Our Proposal
Quality (true random number generation)	X	\checkmark	\checkmark	\checkmark	\checkmark
Complexity (simple post-processing)	X	X	X	X	\checkmark
Flexibility (parameterizability)	X	X	\checkmark	\checkmark	\checkmark
Flexibility (arbitrary distribution)	X	X	X	X	\checkmark
Functionality (application value in, application value out)	X	X	X	✓	\checkmark

Outline

- Motivation
- Background
- RET-based Sampling Unit (RSU)
- RSU Architectures
- Evaluation

p(Foreground)=0.3 p(Background)=0.7

• Markov Chain Monte Carlo method:

```
while(not converged) {
    for each pixel {
        1) compute probabilities of each possible label;
        2) randomly assign new label based on the probabilities;
    }
    p(Foreground)=0.3 p(Background)=0.7
```


- Markov Chain Monte Carlo method: while(not converged) { for each pixel { 1) compute probabilities of each possible label; 2) randomly assign new label based on the probabilities; } p(Foreground)=0.3 p(Background)=0.7
- Checkerboard update.

6

Duke Architecture

- Markov Chain Monte Carlo method: while(not converged) { for each pixel { 1) compute probabilities roughly ossible label; 2) randomly assign new laber based on the probabilities; } p(Foreground)=0.3 p(Background)=0.7
- Checkerboard update.

•

- Markov Chain Monte Carlo method: while(not converged) { for each pixel { Molecular Optical Gibbs Sampling Unit } p(Foreground)=0.3 p(Background)=0.7 Checkerboard update.
 - Duke Architecture

- High quality quantum randomness.
- Single chromophore: exponential distribution.

- Single chromophore: exponential distribution.

- Single chromophore: exponential distribution.
- Many ways to parameterize distributions [Wang et al., 2015]

- Single chromophore: exponential distribution.
- Many ways to parameterize distributions [Wang et al., 2015]

 $\frac{p(\text{Foreground})}{p(\text{Background})} = \frac{\lambda_1}{\lambda_2} = \frac{\text{Intensity}_1}{\text{Intensity}_2}$

7 Duke Architecture

- Single chromophore: exponential distribution.
- Many ways to parameterize distributions [Wang et al., 2015]

 $\frac{\rho(\text{Foreground})}{\rho(\text{Background})} = \frac{\lambda_1}{\lambda_2} = \frac{\text{Intensity}_1}{\text{Intensity}_2} \checkmark \text{Parameterizability}$

7

Duke Architecture

• Multi-chromophore structure: phase-type distribution [Wang et al., 2015].

• Multi-chromophore structure: phase-type distribution [Wang et al., 2015].

- Multi-chromophore structure: phase-type distribution [Wang et al., 2015].
- Can fit most distributions to phase-type distribution [Asmussen et al., 1996].

- Multi-chromophore structure: phase-type distribution [Wang et al., 2015].
- Can fit most distributions to phase-type distribution [Asmussen et al., 1996].

- Multi-chromophore structure: phase-type distribution [Wang et al., 2015].
- Can fit most distributions to phase-type distribution [Asmussen et al., 1996].

8

Duke Architecture

- Multi-chromophore structure: phase-type distribution [Wang et al., 2015].
- Can fit most distributions to phase-type distribution [Asmussen et al., 1996].

8

Duke Architecture

• Hybrid of CMOS + RET technology.

- Hybrid of CMOS + RET technology.
- Label-in label-out.
- Potentially generalize for arbitrary application interface.

- Hybrid of CMOS + RET technology.
- Label-in label-out.
- Potentially generalize for arbitrary application interface.

- Hybrid of CMOS + RET technology.
- Label-in label-out.
- Potentially generalize for arbitrary application interface.

- Hybrid of CMOS + RET technology.
- Label-in label-out.
- Potentially generalize for arbitrary application interface.

- Hybrid of CMOS + RET technology.
- Label-in label-out.
- Potentially generalize for arbitrary application interface.
- Accelerates inner loop per-pixel computation.

Functionality, more than just generating random numbers

- Hybrid of CMOS + RET technology.
- Label-in label-out.
- Potentially generalize for arbitrary application interface.
- Accelerates inner loop per-pixel computation.

• Evaluate one possible label per cycle.

10

Duke Architecture

• Evaluate one possible label per cycle.

- Evaluate one possible label per cycle.
- Time(cycles) to determine a new label = #possible labels

- Evaluate one possible label per cycle.
- Time(cycles) to determine a new label = #possible labels
- At 1GHz system clock, 4 RET circuit replica to avoid structural hazard.

Augmenting GPU with RSUs

- Labels are packed into 32-bit/64-bit registers.
- Modified ISA to support RSU.

Designing as a discrete accelerator

- Customized control and data movement logic.
- Highest performing approach.
- Memory bandwidth limits the upper bound.

Outline

13

Duke Architecture

- Motivation
- Background
- RET-based Sampling Unit (RSU)
- RSU Architectures
- Evaluation
 - Macro-Scale Prototype
 - Performance (emulation)
 - Power/Area (synthesis)

Macro-scale Prototype

- First demonstration of RET-based stochastic computing.
- Demonstrate the capability to parameterize distributions.
- Demonstrate an actual application: foreground-background image segmentation.

• RSU-G4 (Emulated): evaluate 4 possible labels per cycle.

• RSU-G4 (Emulated): evaluate 4 possible labels per cycle.

15

Duke Architecture

• Speedup over standard GPU: 3-34

• RSU-G4 (Emulated): evaluate 4 possible labels per cycle.

15

Duke Architecture

- Speedup over standard GPU: 3-34
- More labels, higher speedup.

Performance: Discrete Accelerator

- Assuming 336GB/s DRAM BW.
- Speedup over standard GPU: 21-84

RSU_G1 Gibbs Sampling Unit

Intel Digital Random Number Generator (DRNG) [Hofemeier, 2012]

RSU_G1 Gibbs Sampling Unit

Intel Digital Random Number Generator (DRNG) [Hofemeier, 2012]

• Sampling occurs in first two Intel DRNG stages.

RSU_G1 Gibbs Sampling Unit

Intel Digital Random Number Generator (DRNG) [Hofemeier, 2012]

- Sampling occurs in first two Intel DRNG stages.
- Intel DRNG: higher throughput, but not easily parameterized.

RSU_G1 Gibbs Sampling Unit

Intel Digital Random Number Generator (DRNG) [Hofemeier, 2012]

15nm technology	4 RET Circuits	AES-256 conditioner
Power	0.16 mW	1.20 mW
Area	1600 µm²	1570 μm²

- Sampling occurs in first two Intel DRNG stages.
- Intel DRNG: higher throughput, but not easily parameterized.
- 4 RET Circuits: consume 13% power, occupy similar area as AES256.

RSU_G1 Gibbs Sampling Unit

Intel Digital Random Number Generator (DRNG) [Hofemeier, 2012]

15nm technology	4 RET Circuits	AES-256 conditioner
Power	0.16 mW	1.20 mW
Area	1600 µm²	1570 μm²

- Sampling occurs in first two Intel DRNG stages.
- Intel DRNG: higher throughput, but not easily parameterized.
- 4 RET Circuits: consume 13% power, occupy similar area as AES256.
- Arbitrary distributions: add negligible power/area on RSU-G.

Duke Architecture

Conclusion

- RSU: CMOS+RET to support probabilistic computing.
- Implement RSU-G for Gibbs Sampling acceleration.
- First experimental demonstration of RSU-G.

- RSU: CMOS+RET to support probabilistic computing.
- Implement RSU-G for Gibbs Sampling acceleration.
- First experimental demonstration of RSU-G.
- Speedup over standard GPU:
 - Augmented GPU 3-34
 Discrete Accelerator 21-84

Conclusion

- RSU: CMOS+RET to support probabilistic computing.
- Implement RSU-G for Gibbs Sampling acceleration.
- First experimental demonstration of RSU-G.
- Speedup over standard GPU:
 - Augmented GPU 3-34
- Achieve desirable properties:

High qualityHigh flexibility

- Discrete Accelerator 21-84
- Low complexity
 High functionality

Conclusion

- RSU: CMOS+RET to support probabilistic computing.
- Implement RSU-G for Gibbs Sampling acceleration.
- First experimental demonstration of RSU-G.
- Speedup over standard GPU:
 - Augmented GPU 3-34
- Achieve desirable properties:

High qualityHigh flexibility

- Ongoing work:
 - full programmability
 - integration with CMOS

- Discrete Accelerator 21-84
- Low complexity
 High functionality
 - high-order MRF
 - Iongevity

Thank you

• Q&A

